

Electron Density Function

- Also called the *electron probability distribution function*: $\rho(r)$
- A 3-D function defined such that $\rho(r) dr$ is the probability of finding an electron in a small volume element (dr) at some point in space (r)

$$\int \boldsymbol{\rho}(r) dr = N$$

• Integration of the function over all space must equal the number of electrons (*N*):

Calculation of Electron Density

- The square of the wavefunction at point (*r*) is interpreted as a probability
 - For a molecule with *n* electrons and n/2 occupied orbitals, the electron density at point (*r*) is given by: n/2

$$\boldsymbol{\rho}(r) = 2\sum_{i=1}^{n/2} \left| \boldsymbol{\psi}_i(r) \right|^2$$

– Recall that M.O.'s (Ψ_i) are expressed as linear combinations of a set of basis functions

Population Analysis

- Mathematical method of partitioning a wave function or electron density into charges on each atom
 - Condenses nuclear charge and e density into an atomic partial charge
 - Can help understand reactivity, bond orders, etc.
 - Corresponds to chemist's view of bond type (ionic, covalent, polar covalent)
 - Since atomic charge is not a quantum mechanical observable, arbitrary methods used to compute

Mulliken Population Analysis

- Electrons shared between basis functions are *split evenly* between the two atoms involved
 - Relative electronegativity is ignored
- Method is entrenched in software packages due to it's ease of implementation
- For small basis sets:
 - Provides an approximate representation of the 3D charge distribution in a molecule
- For larger basis sets:
 - Can produce unreasonable results
 - -(e.g. Orbitals with > 2 electrons)

Löwdin Population Analysis

- Löwdin Method
- Atomic orbitals are first transformed into an orthogonal set of basis functions
- MO coefficients are then transformed to give a representation of Ψ using the new basis set
- Requires more computation
- \rightarrow No longer have orbitals with > 2 electrons
- Still have basis set dependent results

Results of Population Analyses

- 1. Total number of e's (q_A) "associated" with each atom can be found. Thus, the *total atomic charge* on that atom is calculated via: $\mathbf{A} = Z_A - q_A$ (where Z_A is atomic number).
- 2. The **total overlap population** between two atoms can be determined.
 - Large (+) values reflect strong bonding
 - Large (-) values reflect antibonding

Caveats

- 1. Total atomic charges and total overlap populations are *strongly* dependent on the basis set used
- 2. The equal partitioning of electrons between basis sets on different atoms (Mulliken method) is arbitrary, and (often) goes against chemical intuition
- \rightarrow More complex methods are available
 - NBO, NPA, AIM, etc.

II. Electrostatic Potential

- The electrostatic potential surface represents the distance from the molecule at which a (+) test charge experiences a set attraction or repulsion (Not all programs calculate this)
 - Default value (CAChe) = ± 0.03 a.u. (±18 kcal/mol; ± 75 kJ/mol)
- The test charge interacts with *both* the nuclei and the fixed electron cloud (*with zero polarizability*)

Uses of Electrostatic Potential

- What charge distribution does a reactant "see" as it approaches a molecule
- Can rationalize intermolecular interactions (between polar species)
- Helps identify regions of local (-) and (+) potential in a molecule
- Can assist in predicting paths of (charged) reagent approach
 - · Potential sites of protonation
 - e.g., electrophiles are attracted to regions of (-) potential

Calculation of Electrostatic Potential

- Usually calculated point-by-point on a set of grid points starting at the van der Waals surface and extending outwards from this surface some distance *x*
 - ~100 grid point per atom typically used
 - The calculation sums the positive charges of nuclei and the amount of electronic charge density
 - Results are color coded for charge

III. Reactivity Predictions

- Various approaches can be used:
 - 1. Partial charges Usually found via Mulliken population analysis, so the results can sometimes be misleading
 - Could be helpful in charge-controlled reactions
 - "Hard" electrophiles/nucleophiles
 - Protonations/Deprotonations, for example
 - **2. Electrostatic Potential** Will reveal possible trajectory for the approach of charged reagents
 - Partial charges more important ("Soft" electrophiles and nucleophiles)

Reactivity Predictions - continued

- **3. HOMO/LUMO**: Largest lobes– These can sometimes change using different model chemistries, so try several methods
 - FMO (Frontier Molecular Orbital) approach is well-documented
 - Works best when the HOMO and LUMO are well separated in energy from the other orbitals
- **4. Reactivity Indices**: Electrophilic, Nucleophilic, and Radical Susceptibilities
 - Similar to FMO, but additional orbitals near the HOMO and LUMO are also used for a more comprehensive indicator

Frontier Orbital Theory

- HOMO/LUMO overlap between molecules is the governing factor
 - Predict stereochemistry with "soft" nucleophiles and electrophiles (charge less important)

Susceptibilities

- Most useful for larger molecules where the HOMO and LUMO are **not** well separated in energy from the other orbitals – these other orbitals contribute to the reactivity
 - Can calculate electrophilic, nucleophilic, and radical susceptibilities, and map these onto the electron density surface
 - WebMO: Electrophilic (HOMO), Nucleophilic (LUMO), or Radical Frontier Density
 - Each of these is a function of a weighted sum of the squares of the molecular orbital coefficients

Reactivity Indices: Which To Use?

- Susceptibilities more widely applicable – Should be used in most cases
- As always, try a variety of computational methods, and determine the common thread
- Use known compounds of similar structure whose *reactivity is known* to <u>verify the results</u> of calculations on unknown compounds
- Use your (or a colleagues) chemical intuition
 - Be skeptical: Don't believe the results of all calculations!